Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
J Invest Dermatol ; 144(5): 989-1000.e1, 2024 May.
Article En | MEDLINE | ID: mdl-38643989

A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.


Dermatitis, Atopic , Keratinocytes , Dermatitis, Atopic/therapy , Dermatitis, Atopic/pathology , Humans , Keratinocytes/pathology , Permeability , Epidermis/pathology , Epidermis/metabolism , Skin/pathology , Skin/metabolism , Animals , Cell Differentiation
2.
Int J Mol Sci ; 23(10)2022 May 10.
Article En | MEDLINE | ID: mdl-35628125

The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.


Dermatitis, Atopic , Ichthyosis Vulgaris , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Filaggrin Proteins , Humans , Ichthyosis Vulgaris/genetics , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Water/metabolism
3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35216234

Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease in which dry and itchy skin may develop into skin lesions. AD has a strong genetic component, as children from parents with AD have a two-fold increased chance of developing the disease. Genetic risk loci and epigenetic modifications reported in AD mainly locate to genes involved in the immune response and epidermal barrier function. However, AD pathogenesis cannot be fully explained by (epi)genetic factors since environmental triggers such as stress, pollution, microbiota, climate, and allergens also play a crucial role. Alterations of the epidermal barrier in AD, observed at all stages of the disease and which precede the development of overt skin inflammation, manifest as: dry skin; epidermal ultrastructural abnormalities, notably anomalies of the lamellar body cargo system; and abnormal epidermal lipid composition, including shorter fatty acid moieties in several lipid classes, such as ceramides and free fatty acids. Thus, a compelling question is whether AD is primarily a lipid disorder evolving into a chronic inflammatory disease due to genetic susceptibility loci in immunogenic genes. In this review, we focus on lipid abnormalities observed in the epidermis and blood of AD patients and evaluate their primary role in eliciting an inflammatory response.


Dermatitis, Atopic/metabolism , Fats/metabolism , Animals , Epidermis/metabolism , Humans , Inflammation/metabolism , Lipids/physiology
4.
Front Genet ; 12: 689940, 2021.
Article En | MEDLINE | ID: mdl-34322157

Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked KFSD have been described in MBTPS2, the gene for a membrane-bound zinc metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with an autosomal dominant inheritance of KFSD. We present two members of an Austrian family with a phenotype of KFSD, a mother and her son. The disease was not observed in her parents, pointing to a dominant inheritance with a de novo mutation in the index patient. Using whole-exome sequencing, we identified a heterozygous missense variant in CST6 in DNA samples from the index patient and her affected son. In line with family history, the variant was not present in samples from her parents. CST6 codes for cystatin M/E, a cysteine protease inhibitor. Patient keratinocytes showed increased expression of cathepsin genes CTSL and CTSV and reduced expression of transglutaminase genes TGM1 and TGM3. A relative gain of active, cleaved transglutaminases was found in patient keratinocytes compared to control cells. The variant found in CST6 is expected to affect protein targeting and results in marked disruption of the balance between cystatin M/E activity and its target proteases and eventually transglutaminases 1 and 3. This disturbance leads to an impairment of terminal epidermal differentiation and proper hair shaft formation seen in KFSD.

5.
Exp Dermatol ; 30(9): 1298-1308, 2021 09.
Article En | MEDLINE | ID: mdl-33683743

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors. In skin, PPARs modulate inflammation, lipid synthesis, keratinocyte differentiation and proliferation and thus are important for skin barrier homeostasis. Accordingly, PPAR expression is altered in various skin conditions that entail epidermal barrier impairment, that is atopic dermatitis (AD) and psoriasis. Using human epidermal equivalents (HEEs), we established models of acute epidermal barrier impairment devoid of immune cells. We assessed PPAR and cytokine expression after barrier perturbation and examined effects of keratinocyte-derived cytokines on PPAR expression. We show that acetone or SDS treatment causes graded impairment of epidermal barrier function. Furthermore, we demonstrate that besides IL-1ß and TNFα, IL-33 and TSLP are highly relevant markers for acute epidermal barrier impairment. Both SDS- and acetone-mediated epidermal barrier impairment reduce PPARG expression levels, whereas only SDS enhances PPARD expression. In line with findings in IL-1ß and TNFα-treated HEEs, abrogation of IL-1 signalling restores PPARG expression and limits the increase of PPARD expression in SDS-induced epidermal barrier impairment. Thus, following epidermal barrier perturbation, keratinocyte-derived IL-1ß and partly TNFα modulate PPARG and PPARD expression. These results emphasize a role for PPARγ and PPARß/δ in acute epidermal barrier impairment with possible implications for diseases such as AD and psoriasis.


Epidermis/metabolism , Interleukin-1beta/metabolism , Keratinocytes/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Skin Diseases/metabolism , Cells, Cultured , Down-Regulation , Humans , Up-Regulation
6.
J Dermatol ; 48(4): 537-541, 2021 Apr.
Article En | MEDLINE | ID: mdl-33580910

Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive genodermatosis characterized by palmoplantar keratoderma and severe periodontitis leading to premature loss of primary and permanent teeth. PLS is caused by loss-of-function mutations in CTSC, lacking functional cathepsin C, which impairs the activation of neutrophil serine proteases. Precise pathogenesis of periodontal damage is unknown. Patient 1 presented with well-demarcated, transgredient, diffuse, palmoplantar keratoderma and psoriasiform lesions from the age of 2 years. Based on severe and recurrent periodontal inflammation, his dentist had diagnosed PLS at the age of 3 years and provided a strict oral hygiene regimen with repeated adjunct antibiotic therapies. Oral acitretin 10 mg/day along with tretinoin ointment at the age of 9 greatly improved palmoplantar keratoderma. Aged 18 years, the patient exhibited an intact permanent dentition and absence of periodontal disease. Patient 2, a 30-year-old man, suffered from transgredient, diffuse, palmoplantar keratoderma with fissuring from the age of 2 months, marked psoriasiform plaques on elbows and knees, and nail dystrophy. Intriguingly, without specific dental treatment, teeth and dental records were unremarkable. He was referred with a suspected diagnosis of psoriasis. Both patients were otherwise healthy, blood tests and sonography of internal organs were within normal limits. Panel sequencing revealed loss-of-function mutations in CTSC, c.322A>T (p.Lys108Ter) and c.504C>G (p.Tyr168Ter) in patient 1 and homozygous c.415G>T (p.Gly139Ter) in patient 2. The final diagnosis of unusual PLS was made. PLS should be considered in palmoplantar keratoderma lacking periodontitis or tooth loss.


Keratoderma, Palmoplantar , Papillon-Lefevre Disease , Adolescent , Adult , Cathepsin C/genetics , Child, Preschool , Dentition, Permanent , Homozygote , Humans , Infant , Keratoderma, Palmoplantar/diagnosis , Keratoderma, Palmoplantar/genetics , Male , Papillon-Lefevre Disease/complications , Papillon-Lefevre Disease/diagnosis , Papillon-Lefevre Disease/genetics
7.
J Invest Dermatol ; 141(1): 114-123, 2021 01.
Article En | MEDLINE | ID: mdl-32553662

Atopic dermatitis (AD) is an inflammatory skin disease in which epidermal barrier impairment, often owing to FLG null mutations, precedes immune hyperresponsiveness. Ichthyosis vulgaris is characterized by FLG null mutations and noninflamed dry skin. Netherton syndrome (NS), caused by SPINK5 null mutations, is characterized by generalized erythroderma with scaling and atopic manifestations. The goal of this work was to evaluate associations between specific skin disease features, such as ichthyotic and/or atopic manifestations, and the skin bacterial and fungal microbiota. Taxon diversity showed greater variation in the bacterial microbiota than in the fungal microbiota in the skin diseases. The relative abundances of Firmicutes (Staphylococcus) and Actinobacteria (Corynebacterium) were augmented in ichthyosis vulgaris, AD, and NS, whereas those of Proteobacteria/Enhydrobacter and Bacteroidetes were reduced, regardless of body site. Furthermore, proportions of Staphylococcus were correlated with transepidermal water loss and serum IgE levels. Nevertheless, the skin of patients with low to mild AD was overcolonized with Staphylococcus epidermidis and not with Staphylococcus aureus. Ascomycota were increased in both AD and NS, but from expansion of different fungal species. Finally, the expansion of pathologic bacteria in AD and NS might be supported by surrounding fungi. Thus, distinguishable bacterial and fungal skin dysbiosis in AD, NS, and ichthyosis vulgaris emphasizes disease-specific pathomechanisms.


Bacteria/isolation & purification , Dermatitis, Atopic/microbiology , Dysbiosis/microbiology , Fungi/isolation & purification , Microbiota , Netherton Syndrome/microbiology , Skin/microbiology , Adult , Dermatitis, Atopic/complications , Dermatitis, Atopic/pathology , Dysbiosis/complications , Female , Filaggrin Proteins , Humans , Male , Netherton Syndrome/complications , Netherton Syndrome/pathology , Skin/pathology
10.
J Dtsch Dermatol Ges ; 18(1): 17-26, 2020 Jan.
Article De | MEDLINE | ID: mdl-31985158

HINTERGRUND: Ichthyosen sind eine heterogene Gruppe von Krankheiten, deren klinische Klassifizierung schwierig ist. Hier wird die Ichthyosekohorte eines Expertisezentrums für Genodermatosen im Detail beschrieben. PATIENTEN UND METHODIK: Eingeschlossen wurden Patienten mit klinisch oder genetisch bestätigter Ichthyose, die zwischen 2004 und 2017 untersucht und in einer Datenbank aufgenommen wurden. Krankheitsbeginn, Phänotyp, Histologie, Komorbiditäten und Familienanamnese wurden detailliert beschrieben. Bei den genetisch getesteten Patienten wurden Jahr und Methode der genetischen Testung protokolliert und die Prävalenz der unterschiedlichen Autosomal-rezessive-kongenitale Ichthyose (ARCI)-Gene und -Phänotypen, die Prävalenz der syndromalen Ichthyosen und die Genotyp-Phänotyp-Korrelationen analysiert. ERGEBNISSE UND METHODIK: Von den insgesamt 198 eingeschlossenen Patienten wurden 151 genetisch getestet. 81 Patienten hatten eine Ichthyosis vulgaris (IV), 43 eine X-chromosomale Ichthyose (XLI), 38 eine ARCI, 9 eine keratinopathische Ichthyose (KPI) und ein Patient eine Exfoliative Ichthyose. 26 Patienten litten an einer syndromalen Ichthyose. Im Vergleich zu den syndromalen Ichthyosen wurde bei den häufigen Ichthyosen (IV, XLI) und KPI eine gute Phänotyp-Genotyp-Korrelation beobachtet. In 91 % der ARCI-Patienten konnte die exakte Diagnose durch genetische Testung gestellt werden. Lediglich bei 33 % der Patienten mit syndromaler Ichthyose bestand vor der genetischen Testung ein Verdacht auf die tatsächliche Diagnose. In 86 % der Fälle wurde eine kausale Mutation nachgewiesen. SCHLUSSFOLGERUNGEN: Die Arbeit beschreibt das Spektrum der Ichthyosen an einem Expertisezentrum und zeigt, dass für diese Gruppe die genetische Testung von Genodermatosen ein diagnostischer Standard werden sollte.

11.
J Dtsch Dermatol Ges ; 18(1): 17-25, 2020 Jan.
Article En | MEDLINE | ID: mdl-31642606

BACKGROUND: Ichthyoses are a heterogeneous disease group, which makes clinical classification challenging. An ichthyosis cohort at a center for genodermatoses is presented in detail. PATIENTS AND METHODS: Patients with clinically and/or genetically confirmed ichthyosis seen from 2004 to 2017 and listed in a database were included. Disease onset, phenotype, histology, comorbidities and family history were described in detail. In genetically tested patients, the prevalence of various ARCI genes, ARCI phenotypes and syndromic ichthyoses, as well as genotype-phenotype correlation and year/method of genetic testing was assessed. RESULTS: Of all 198 patients who were included in the cohort, 151 were genetically tested. 81 had ichthyosis vulgaris, 43 X-linked ichthyosis, 38 autosomal recessive congenital ichthyosis (ARCI), 9 keratinopathic ichthyosis (KPI) and one exfoliative ichthyosis. 26 individuals suffered from syndromic ichthyoses. A good genotype-phenotype correlation was observed for common ichthyoses and KPI; the correlation was less good in syndromic ichthyoses. In 91 % of ARCI patients an accurate diagnosis was obtained by genetic testing. In only 33 % of syndromic ichthyoses was the definitive diagnosis suspected before genetic testing, which revealed a causative mutation in 86 % of cases. CONCLUSION: This study describes the spectrum of ichthyoses in a center of expertise and shows that genetic testing should become a diagnostic standard for this disease group.


Genetic Testing , Ichthyosis/genetics , Phenotype , Adolescent , Austria , Female , Genotype , Humans , Ichthyosis/classification , Ichthyosis/diagnosis , Ichthyosis/pathology , Immunohistochemistry , Male , Microscopy, Electron, Transmission , Mutation , Retrospective Studies
13.
Cells ; 8(5)2019 05 22.
Article En | MEDLINE | ID: mdl-31121896

Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.


Dermatitis, Atopic/pathology , Ichthyosis Vulgaris/pathology , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Cells, Cultured , Dermatitis, Atopic/metabolism , Filaggrin Proteins , Humans , Hypersensitivity/metabolism , Ichthyosis Vulgaris/metabolism , Inflammation/metabolism , Models, Biological , Mutation , Skin/metabolism , Skin/pathology
16.
J Cell Mol Med ; 23(2): 1288-1299, 2019 02.
Article En | MEDLINE | ID: mdl-30515983

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathogenesis. Although regulatory T cells (Tregs) have previously been studied in AD, their role remains controversial, likely owing to patient heterogeneity. Thus, we recruited adult AD patients and age-matched healthy controls, and assessed their filaggrin (FLG) genotype, serum IgE level, and eczema area and severity index (EASI). We found increased proportions of all circulating Treg subpopulations in AD patients. Moreover, we show positive correlations between circulating Tregs and serum IgE FLG null mutations limited the expansion of both memory and effector Tregs and enhanced that of recently thymus-emigrated Tregs. Furthermore, proportions of circulating Th2- or Th17-Tregs but not Th1-Tregs were increased in AD patients, and accentuated by FLG null mutations, thereby mimicking the immune deviation observed in Th cell populations. Moreover, ICOS+ Tregs showed reduced production of interleukin-10, suggesting impaired immunosuppression in AD. The level of demethylation of FOXP3i1, which reflects the stability of FOXP3 expression, was similar in the blood and skin of AD patients and healthy controls. Overall, these results show that Tregs may participate into AD pathogenesis and that FLG null mutations exert further modifications on specific subpopulations of circulating Tregs.


Biomarkers/blood , Dermatitis, Atopic/immunology , Loss of Function Mutation , S100 Proteins/genetics , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Case-Control Studies , Dermatitis, Atopic/blood , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Filaggrin Proteins , Follow-Up Studies , Humans , Prognosis
20.
J Invest Dermatol ; 138(1): 98-108, 2018 01.
Article En | MEDLINE | ID: mdl-28899689

Previous transcriptome analyses underscored the importance of immunological and skin barrier abnormalities in atopic dermatitis (AD). We sought to identify pathogenic pathways involved in AD by comparing the transcriptomes of AD patients stratified for filaggrin (FLG)-null mutations to those of both healthy donors and patients with ichthyosis vulgaris. We applied RNA sequencing to analyze the whole transcriptome of nonlesional skin. We found that 607 genes (476 up-regulated and 131 down-regulated by >2-fold) and 193 genes (172 up-regulated and 21 down-regulated by >2-fold) were differentially expressed when all AD or ichthyosis vulgaris patients were compared with healthy donors, respectively. Expression of genes involved in RNA/protein turnover and adenosine triphosphate synthesis, as well as genes involved in cell death, response to oxidative stress, DNA damage/repair, and autophagy, were significantly enriched in AD skin and, to a lesser extent, in ichthyosis vulgaris skin. FLG-null mutations appear to hardly interfere with current observations. Genes related to xenobiotic metabolism were up-regulated in AD skin only, as were genes related to arachidonic, linoleic, and α-linolenic acid metabolism. Thus, this work newly links AD pathogenesis to aberrant expression of genes related to xenobiotic metabolism.


Dermatitis, Atopic/etiology , Ichthyosis Vulgaris/etiology , Metabolic Networks and Pathways/genetics , Skin/metabolism , Xenobiotics/metabolism , Adult , Aged , Case-Control Studies , Cohort Studies , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Down-Regulation , Female , Filaggrin Proteins , Gene Expression Profiling , Healthy Volunteers , Humans , Ichthyosis Vulgaris/genetics , Ichthyosis Vulgaris/pathology , Intermediate Filament Proteins/genetics , Loss of Function Mutation , Male , Middle Aged , Sequence Analysis, RNA , Skin/pathology , Up-Regulation , Young Adult
...